

# SWANBOURNE HOUSE 

## Calculation Policy

MATHS DEPARTMENT
ANNE COATS

## Table of Contents

The table of contents is empty because you aren't using the paragraph styles set to appear in it.

## INTRODUCTION

This policy outlines the methods applied in the classroom during Maths lessons at Swanbourne House School. We follow a Mastery curriculum in which we model calculations through pictorial, concrete and abstract representations. We teach these steps to ensure that the children are equipped with the mathematical toolkit to approach and solve problems in a variety of ways and are able to represent these using efficient, formal, written methods. This document is a guide to the development of methods taught to students as they progress through the Maths curriculum.

## KEY STAGE 1 overview

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

## Addition and subtraction: Children first learn to

 connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

## Multiplication and division: Children develop an

 awareness of equal groups and link this with counting in equal steps, starting with 2s, 5s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations. Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

## Year 1

| Addition | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- |

[^0]| Counting and adding more Children add one more person or object to a group to find one more. | Counting and adding more Children add one more cube or counter to a group to represent one more. <br> One more than 4 is 5 . | Counting and adding more Use a number line to understand how to link counting on with finding one more. <br> One more than 6 is 7. <br> 7 is one more than 6. <br> Learn to link counting on with adding more than one. $5+3=8$ |
| :---: | :---: | :---: |
| Understanding part-part-whole relationship <br> Sort people and objects into parts and understand the relationship with the whole. <br> The parts are 2 and 4 . The whole is 6 . | Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. <br> The parts are 1 and 5. The whole is 6. | Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $6+4=10$ $6+4=10$ |


| Knowing and finding number bonds within 10 |
| :--- |
| Break apart a group and put back together to |
| find and form number bonds. | | Knowing and finding number bonds within 10 |
| :--- |
| Use five and ten frames to represent key |
| number bonds. | | Knowing and finding number bonds within 10 |
| :--- |
| Use a part-whole model alongside other |
| representations to find number bonds. Make sure |
| to include examples where one of the parts is |
| zero. |

Understanding teen numbers as a complete
10 and some more
Comple a group of 10 objects and count more.
13 is 10 and 3 more.

|  | Adding by counting on <br> Children use knowledge of counting to 20 to find a total by counting on using people or objects. | Adding by counting on <br> Children use counters to support and represent their counting on strategy. | Adding by counting on <br> Children use number lines or number tracks to support their counting on strategy. $7+5=\square$ |
| :---: | :---: | :---: | :---: |
|  | Adding the 1s <br> Children use bead strings to recognise how to add the 1 s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$ | Adding the 1s <br> Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$ | Adding the 1s <br> Children recognise that a teen is made from a 10 and some 1s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ <br> So, $13+5=18$ |
|  | Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. <br> 7 add 3 makes 10. <br> So, 7 add 5 is 10 and 2 more. | Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 . | Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation. $9+4=13$ |
| Subtraction |  |  |  |



| Finding the difference <br> Arrange two groups so that the difference between the groups can be worked out. <br> 8 is 2 more than 6. <br> 6 is 2 less than 8. <br> The difference between 8 and 6 is 2 . | Finding the difference <br> Represent objects using sketches or counters to support finding the difference. $5-4=1$ <br> The difference between 5 and 4 is 1 . | Finding the difference <br> Children understand 'find the difference' as subtraction. $10-4=6$ <br> The difference between 10 and 6 is 4 . |
| :---: | :---: | :---: |
| Subtraction within 20 <br> Understand when and how to subtract 1s efficiently. <br> Use a bead string to subtract 1s efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$ | Subtraction within 20 <br> Understand when and how to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$ | Subtraction within 20 <br> Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$ |
| Subtracting 10s and 1s <br> For example: 18-12 <br> Subtract 12 by first subtracting the 10, then the remaining 2. <br> First subtract the 10, then take away 2. | Subtracting 10s and 1 s <br> For example: 18-12 <br> Use ten frames to represent the efficient method of subtracting 12. <br> First subtract the 10, then subtract 2. | Subtracting 10s and 1 s <br> Use a part-whole model to support the calculation. $\begin{array}{r} 19-14 \\ 19-10=9 \\ 9-4=5 \end{array}$ <br> So, $19-14=5$ |


|  | Subtraction bridging 10 using number bonds For example: 12-7 <br> Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. <br> 7 is 2 and 5 , so I take away the 2 and then the 5 . | Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. <br> For 13-5, I take away 3 to make 10, then take away 2 to make 8. | Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method. |
| :---: | :---: | :---: | :---: |
| Multiplication |  |  |  |
|  | Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. <br> A <br> a <br> $c$ | Recognising and making equal groups Children draw and represent equal and unequal groups. | Describe equal groups using words <br> Three equal groups of 4 . <br> Four equal groups of 3 . |
|  | Finding the total of equal groups by counting in 2s, 5 s and 10s <br> There are 5 pens in each pack ... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$ | Finding the total of equal groups by counting in $\mathbf{2 s}$, 5 s and 10 s <br> 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . | Finding the total of equal groups by counting in $\mathbf{2 s}, 5 \mathrm{~s}$ and 10 s <br> Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . |


| Division |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Grouping <br> Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. <br> Sort a whole set people and objects into equal groups. <br> There are 10 children altogether. <br> There are 2 in each group. <br> There are 5 groups. | Grouping <br> Represent a whole and work out how many equal groups. <br> There are 10 in total. There are 5 in each group. There are 2 groups. | Grouping <br> Children may relate this to counting back in steps of 2,5 or 10 . |
|  | Sharing <br> Share a set of objects into equal parts and work out how many are in each part. | Sharing <br> Sketch or draw to represent sharing into equal parts. This may be related to fractions. | Sharing <br> 10 shared into 2 equal groups gives 5 in each group. |


|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Addition |  |  |  |
| Understanding 10s and 1s | Group objects into 10s and 1s. <br> Bundle straws to understand unitising of 10s. | Understand 10s and 1s equipment, and link with visual representations on ten frames. | Represent numbers on a place value grid, using equipment or numerals. |
| Adding 10s | Use known bonds and unitising to add 10s. <br> I know that $4+3=7$. <br> So, I know that 4 tens add 3 tens is 7 tens. | Use known bonds and unitising to add 10s. <br> I know that $4+3=7$. <br> So, I know that 4 tens add 3 tens is 7 tens. | Use known bonds and unitising to add 10s. $4+3=\square$ $\begin{aligned} & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$ |



| Adding a 1-digit number to a 2-digit number using exchange | Exchange 10 ones for 1 ten. | Exchange 10 ones for 1 ten. | Exchange 10 ones for 1 ten. |
| :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|l\|l\|} \hline 1 & 0 \\ \hline \end{array}$ | $T$ 0 | $\frac{-1}{2}$ |
|  |  |  | $\begin{array}{r} 2 \\ +\quad \begin{array}{r} 5 \\ \mathrm{~g} \\ \hline \end{array} \quad \begin{array}{l} 12 \\ \hline \end{array} \\ \hline \end{array}$ |
|  |  | 강cos |  |
|  | $T$ 0 | $T \quad 0$ | $\left[\begin{array}{ll} 10 \\ 2 & 4 \end{array}\right.$ |
|  | 新 |  | $32$ |
|  |  | - $\square$ |  |
| Adding a multiple of 10 to a 2-digit number | Add the 10s and then recombine. <br> 27 is 2 tens and 7 ones. <br> 50 is 5 tens. <br> There are 7 tens in total and 7 ones. <br> So, $27+50$ is 7 tens and 7 ones. | Add the 10s and then recombine. <br> 66 is 6 tens and 6 ones. $66+10=76$ <br> A 100 square can support this understanding. | Add the 10 s and then recombine. $37+20=?$ $\begin{aligned} & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$ |


| Adding a |
| :--- |
| multiple of 10 to |
| a 2-digit number |
| using columns |

Adding two
2-digit numbers


Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School




Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Multiplication |  |  |  |
| :---: | :---: | :---: | :---: |
| Equal groups and repeated addition | Recognise equal groups and write as repeated addition and as multiplication. <br> 3 groups of 5 chairs <br> 15 chairs altogether | Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. | Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$ |
| Using arrays to represent multiplication and support understanding | Understand the relationship between arrays, multiplication and repeated addition. <br>  <br> 4 groups of 5 | Understand the relationship between arrays, multiplication and repeated addition. <br> 4 groups of $5 \ldots 5$ groups of 5 | Understand the relationship between arrays, multiplication and repeated addition. |
| Understanding commutativity | Use arrays to visualise commutativity. <br> I can see 6 groups of 3 . <br> I can see 3 groups of 6 . | Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. <br> This is 2 groups of 6 and also 6 groups of 2 . | Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$ |



Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

Sharing equally Start with a whole and share into equal parts, one at a time.

## 000000000000

12 shared equally between 2.
They get 6 each.

Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared


```
Therget 5 each.
15 shared equally between 3.
They get 5 each
```

Represent the objects shared into equal parts using a bar model.


20 shared into 5 equal parts. There are 4 in each part.

Use a bar model to support understanding of the division.

000000000000000000
15
$\qquad$
$18 \div 2=9$

| Grouping equally | Understand how to make equal groups from a whole. <br> $2022^{2}$ 홀웅 <br> (0) <br> 8 divided into 4 equal groups. <br> There are 2 in each group. | Understand the relationship between grouping and the division statements. $12+3 \quad 4$ $12 \div 4=3$ $0000000000$ $12 \div 6=2$ | Understand how to relate division by grouping to repeated subtraction. <br> There are 4 groups now. <br> 12 divided into groups of 3. $12 \div 3=4$ <br> There are 4 groups. |
| :---: | :---: | :---: | :---: |
| Using known times-tables to solve divisions | Understand the relationship between multiplication facts and division. <br> 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 . | Link equal grouping with repeated subtraction and known times-table facts to support division. <br> 40 divided by 4 is 10 . <br> Use a bar model to support understanding of the link between times-table knowledge and division. | Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ <br> I used the IV times-table to help me. $3 \times 10=30$ <br> I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$ |

## Lower KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/ subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

## Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .
Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.
Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single digit.
Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300, 120 and 3 , as these can be divided by 3 using known facts. Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.
In Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

|  | Concrete | Year 3 |  |
| :--- | :--- | :--- | :--- |
| Addition |  |  | Abstract |

[^1]Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Understanding 100s | Understand the cardinality of 100 , and the link with 10 tens. <br> Use cubes to place into groups of 10 tens. <br>  <br>  <br>  4 को <br>  <br>  99096096915 <br>  | Unitise 100 and count in steps of 100. <br> 100 <br> 200 <br> 30 | Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0. |
| :---: | :---: | :---: | :---: |
| Understanding place value to 1,000 | Unitise 100s, 10s and 1s to build 3-digit numbers. | Use equipment to represent numbers to 1,000 . <br> Use a place value grid to support the structure of numbers to 1,000 . <br> Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount. | Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ <br> Recognise numbers to 1,000 represented on a number line, including those between intervals. |


| Adding 100s | Use known facts and unitising to add multiples of 100. $3+2=5$ <br> 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$ | Use known facts and unitising to add multiples of 100. $3+4=7$ <br> 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$ | Use known facts and unitising to add multiples of 100. <br> Represent the addition on a number line. <br> Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 3-digit number + 1 s , no exchange or bridging | Use number bonds to add the 1 s . <br> 10 LOLLIES $214+4=?$ <br> Now there are $4+4$ ones in total. $\begin{aligned} & 4+4=8 \\ & 214+4=218 \end{aligned}$ | Use number bonds to add the 1 s . <br> Use number bands to odd the B . $5+4-9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \end{aligned}$ $245+4=249$ | Understand the link with counting on. $245+4$ <br> Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ <br> I will add the 1 s . $5+4=9$ <br> So, $245+4=249$ |


| 3－digit number＋ 1s with exchange | Understand that when the 1 s sum to 10 or more， this requires an exchange of 10 ones for 1 ten． <br> Children should explore this using unitised objects or physical apparatus． | Exchange 10 ones for 1 ten where needed．Use a place value grid to support the understanding． |  |  | Understand how to bridge by partitioning to the 1 s to make the next 10 ． $\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$ <br> Ensure that children understand how to add 1 s bridging a 100. <br> $198+5=?$ <br> $198+2+3=203$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | H | T | 0 |  |
|  |  |  | 明閴 | sasas |  |
|  |  | H | T | 0 |  |
|  |  |  |  |  |  |
|  |  | H | T | 0 |  |
|  |  |  | 睍 |  |  |
|  |  | H | T | 0 |  |
|  |  |  |  | Be |  |
|  |  | H | T | 0 |  |
|  |  |  | 贔相 | $30$ |  |
|  |  | $135+7=142$ |  |  |  |


| $\begin{aligned} & \text { 3-digit number + } \\ & \text { 10s, no } \\ & \text { exchange } \end{aligned}$ | Calculate mentally by forming the number bond for the 10s. <br> 19 -8 $234+50$ <br> There are 3 tens and 5 tens altogether. $3+5=8$ <br> In total there are 8 tens. $234+50=284$ | Calculate mentally by forming the number bond for the 10s. $351+30=?$ $\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { tens } \\ & 351+30=381 \end{aligned}$ | Calculate mentally by forming the number bond for the 10s. $753+40$ <br> I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 3-digit number + 10s, with exchange | Understand the exchange of 10 tens for 1 hundred. <br> $\square$ | Add by exchanging 10 tens for 1 hundred. $184+20=?$   $184+20=204$ | Understand how the addition relates to counting on in 10s across 100. $184+20=?$ <br> I can count in 10s ... 194 ... 204 $184+20=204$ <br> Use number bonds within 20 to support efficient mental calculations. $385+50$ <br> There are 8 tens and 5 tens. <br> That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$ |


| 3-digit number + 2-digit number | Use place value equipment to make and combine groups to model addition. | Use a place value grid to organise thinking and adding of 1 s , then 10 s . | Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation. |
| :---: | :---: | :---: | :---: |
| 3-digit number + 2-digit number, exchange required | Use place value equipment to model addition and understand where exchange is required. <br> Use place value counters to represent $154+72$. <br> Use this to decide if any exchange is required. <br> There are 5 tens and 7 tens. That is 12 tens so I will exchange. | Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ <br> Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. <br> Children should be encouraged at every stage to select methods that are accurate and efficient. | Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$ |


| 3-digit number + 3-digit number, no exchange | Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. <br> $326+541$ is represented as: | Represent the place value grid with equipment to model the stages of column addition. | Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation. |
| :---: | :---: | :---: | :---: |
| 3-digit number + 3-digit number, exchange required | Use place value equipment to enact the exchange required. <br> There are 13 ones. <br> I will exchange 10 ones for 1 ten. | Model the stages of column addition using place value equipment on a place value grid. | Use column addition, ensuring understanding of place value at every stage of the calculation. $\begin{array}{r} H \quad 0 \\ \hline\left(\begin{array}{r\|r} 1 & 2 \\ 2 \end{array}\right. \\ +\begin{array}{r} 2 \\ \hline \end{array} \\ \hline 3 \times 3 \end{array}$ $126+217=343$ <br> Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$ ? |



| 3－digit number－ <br> 1s，no exchange | Use number bonds to subtract the 1 s ．$214-3=?$ | Use number bonds to subtract the 1s． |  |  | Understand the link with counting back using a number line． <br> Use known number bonds to calculate mentally． $476-4=?$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | H | T | 0 |  |
|  |  |  |  |  |  |
|  |  | 3 | $1$ | 9 |  |
|  |  | $319-4=$ |  |  | $\square$ |
|  |  | H | T | 0 | ） |
|  |  |  |  |  | $6-4=2$ |
|  |  | 3 | 1 | प |  |
|  | $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$ | $\begin{aligned} & 9-4=5 \\ & 319-4= \end{aligned}$ |  |  |  |
| 3－digit number－ 1 s ，exchange or bridging required | Understand why an exchange is necessary by exploring why 1 ten must be exchanged． <br> Use place value equipment． | Represent the required exchange on a place value grid．$151-6=?$ |  |  | Calculate mentally by using known bonds． $151-6=?$ |
|  |  | H | T | $0$ |  |
|  |  | シ\＃\＃．．．．．．． | 門聞 | a |  |
|  |  | H | T | $0$ |  |
|  |  |  | 相聞 |  |  |




[^2]Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Representing subtraction problems |  | Use bar models to represent subtractions. <br> 'Find the difference' is represented as two bars for comparison. <br> Bar models can also be used to show that a part must be taken away from the whole. | Children use alternative representations to check calculations and choose efficient methods. <br> Children use inverse operations to check additions and subtractions. <br> The part-whole model supports understanding. <br> I have completed this subtraction. $525-270=255$ <br> I will check using addition. $\begin{array}{r} -1 \\ \hline 270 \\ +25 \\ \hline 5 \end{array}$ |
| :---: | :---: | :---: | :---: |
| Multiplication |  |  |  |

Understanding equal grouping and repeated addition

Children continue to build understanding of equal groups and the relationship with repeated addition.

They recognise both examples and nonexamples using objects.


Children recognise that arrays can be used to model commutative multiplications.


I can see 3 groups of 8 .
I can see 8 groups of 3 .

Children recognise that arrays demonstrate commutativity.


This is 3 groups of 4 . This is 4 groups of 3

Children understand the link between repeated addition and multiplication.


8 groups of 3 is 24
$3+3+3+3+3+3+3+3=24$
$8 \times 3=24$
A bar model may represent multiplications as equal groups

24
$\square$ 4 4

| Using <br> commutativity to <br> support <br> understanding <br> of the times- <br> tables | Understand how to use times-tables facts <br> flexibly. | Understand how times-table facts relate to <br> commutativity |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |




| Multiplying a <br> 2-digit number by a 1 -digit number, expanded column method | Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$ | Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100 s . $4 \times 23=?$   <br> -$4 \times 23=92$$\boldsymbol{T}$ 0 <br> $6 \Leftrightarrow$ 00 <br> $6 \omega$ 0 <br> $6 \omega$ 0 <br> $6 \omega$ 0 <br> $6 \omega$ 0$\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$ | Children may write calculations in expanded column form, but must understand the link with place value and exchange. <br> Children are encouraged to write the expanded parts of the calculation separately. $\begin{cases}5 \times 28=? \\ \frac{T 0}{28} & \\ \times \begin{array}{rl} 5 & 5 \times 8 \\ \hline 40 & 5 \times 20 \\ \frac{100}{140} & 5 \times 20 \\ \hline \end{array}\end{cases}$ |
| :---: | :---: | :---: | :---: |
| Division |  |  |  |

Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Using times- |
| :--- |
| tables |
| knowledge to |
| divide |


| Use knowledge of known times-tables to |
| :--- |
| calculate divisions. |
| 24 divided into groups of 8. |

There are groups of 8.

| Understanding remainders | Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. <br> IIIIIIIIII $\square \square \square \mid$ <br> There are 13 sticks in total. <br> There are 3 groups of 4, with 1 remainder. | Use images to explain remainders. <br> $22 \div 5=4$ remainder 2 | Understand that the remainder is what cannot be shared equally from a set. $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Using known facts to divide multiples of 10 | Use place value equipment to understand how to divide by unitising. <br> Make 6 ones divided by 3. <br> Now make 6 tens divided by 3. <br> What is the same? What is different? | Divide multiples of 10 by unitising. <br> 12 tens shared into 3 equal groups. 4 tens in each group. | Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$ <br> 180 is 18 tens. <br> 18 divided by 3 is 6 . <br> 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$ |



| 2-digit number divided by 1-digit number, with remainders | Use place value equipment to understand the concept of remainder. <br> Make 29 from place value equipment. <br> Share it into 2 equal groups. <br> There are two groups of 14 and 1 remainder. | Use place value equipment to understand the concept of remainder in division. $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$ | Partition to divide, understanding the remainder in context. <br> 67 children try to make 5 equal lines. $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ <br> $17 \div 5=3$ remainder 2 <br> $67 \div 5=13$ remainder 2 <br> There are 13 children in each line and <br> 2 children left out. |
| :---: | :---: | :---: | :---: |
| Year 4 |  |  |  |
|  | Concrete | Pictorial | Abstract |
| Addition |  |  |  |
| Understanding numbers to 10,000 | Use place value equipment to understand the place value of 4-digit numbers. <br> 4 thousands equal 4,000. <br> 1 thousand is 10 hundreds. | Represent numbers using place value counters once children understand the relationship between 1,000s and 100s. <br>  $2,000+500+40+2=2,542$ | Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ <br> Understand and read 4-digit numbers on a number line. |




| Representing additions and checking strategies |  | Bar models m in problem co methods whe $\square$ <br> I chose to wor then subtract $2,999$ <br> This is equiva | be used to represent additions ts, and to justify mental propriate. <br> it $574+800$ <br> to $3,000+3,000$. | Use rounding and estimating on a number line to check the reasonableness of an addition. $912+6,149=?$ <br> I used rounding to work out that the answer should be approximately $1,000+6,000=7,000$ |
| :---: | :---: | :---: | :---: | :---: |
| Subtraction |  |  |  |  |
| Choosing mental methods where appropriate | Use place value equipment to justify mental methods. <br> What number will be left if we take away 300 ? | Use place val where approp $7,646-40=$ | ds to support mental methods | Use knowledge of place value and unitising to subtract mentally where appropriate. $3,501-2,000$ <br> 3 thousands -2 thousands $=1$ thousand $3,501-2,000=1,501$ |




| Representing subtractions and checking strategies |  | Use bar models to represent subtractions where a part needs to be calculated. <br> I can work out the total number of Yes votes using 5,762-2,899. <br> Bar models can also represent 'find the difference' as a subtraction problem. | Use inverse operations to check subtractions. <br> I calculated 1,225-799=574. <br> I will check by adding the parts. <br> The parts do not add to make 1,225. I must have made a mistake. |
| :---: | :---: | :---: | :---: |
| Multiplication |  |  |  |
| Multiplying by multiples of 10 and 100 | Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. <br> 3 groups of 4 ones is 12 ones. <br> 3 groups of 4 tens is 12 tens. <br> 3 groups of 4 hundreds is 12 hundreds. | Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $\begin{aligned} & 3 \times 4=12 \\ & 3 \times 40=120 \\ & 3 \times 400=1,200 \end{aligned}$ | Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$ |


| Understanding times-tables up to $\mathbf{1 2 \times 1 2}$ | Understand the special cases of multiplying by 1 and 0 . <br> $5 \times 1=5$ $5 \times 0=0$ | Represent the relationship between the $\times 9$ table and the $\times 10$ table. <br> Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$ | Understand how times-tables relate to counting patterns. <br> Understand links between the <br> $\times 3$ table, $\times 6$ table and $\times 9$ table <br> $5 \times 6$ is double $5 \times 3$ <br> $\times 5$ table and $\times 6$ table <br> I know that $7 \times 5=35$ <br> so I know that $7 \times 6=35+7$. <br> $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ <br> $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Understanding and using partitioning in multiplication | Make multiplications by partitioning. <br> $4 \times 12$ is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$ | Understand how multiplication and partitioning are related through addition. | Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$ |

Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Column multiplication for <br> 2- and <br> 3-digit numbers multiplied by a single digit | Use place value equipment to make multiplications. <br> Make $4 \times 136$ using equipment. <br> I can work out how many 1s, 10s and 100s. <br> There are $4 \times 6$ ones... 24 ones <br> There are $4 \times 3$ tens ... 12 tens <br> There are $4 \times 1$ hundreds ... 4 hundreds $24+120+400=544$ | Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 935 \\ \hline \end{array}$ | Use the formal column method for up to 3 -digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \\ \times 36 \\ \hline 936 \\ \hline \end{array}$ <br> Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation. |
| :---: | :---: | :---: | :---: |
| Multiplying more than two numbers | Represent situations by multiplying three numbers together. <br> Each sheet has $2 \times 5$ stickers. <br> There are 3 sheets. <br> There are $5 \times 2 \times 3$ stickers in total. $\underbrace{5 \times 2}_{10 \times 3=30} \times 3=30$ | Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$ | Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times 2 \times 5= \\ & \underbrace{}_{12} \times 10=120 \end{aligned}$ <br> So. $24 \times 5=120$ |
| Division |  |  |  |

[^3]Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Understanding <br> the relationship <br> between <br> multiplication <br> and division, <br> including times- <br> tables <br> and division facts. |
| :--- |


| Dividing 2-digit and 3-digit numbers by a single digit by partitioning into 100s, 10s and 1s | Partition into 10s and 1 s to divide where appropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$ | Partition into 100 s, 10 s and 1 s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ <br> 3 groupe of 1 :en <br> I groups ef I onss $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$ | Partition into 100s, 10s and 1s using a partwhole model to divide where appropriate. $142 \div 2=?$ $\begin{aligned} & 100 \div 2=50 \\ & 40 \div 2=20 \\ & 6 \div 2=3 \\ & 50+20+3=73 \\ & 142 \div 2=73 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning | Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ <br> I will split it into 30 and 12, so that I can divide by 3 more easily. | Represent how to partition flexibly where needed. $84 \div 7=?$ <br> I will partition into 70 and 14 because I am dividing by 7. | Make decisions about appropriate partitioning based on the division required. <br> Understand that different partitions can be used to complete the same division. |

[^4]Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School


## Upper KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

## Addition and subtraction: Children build on their

 column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods. Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.
## Multiplication and division: Building on their

 understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers. Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10 , 100 and 1,000.Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and $1 \%$.




| Column subtraction with whole numbers | Use place value equipment to understand where exchanges are required. $2,250-1,070$ | Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$Tth 7 h 4 $T$ <br>  00000 0.800000 0$\qquad$ <br>  | Use column subtraction methods with exchange where required. $62,097-18,534=43,563$ |
| :---: | :---: | :---: | :---: |
| Checking strategies and representing subtractions |  | Bar models represent subtractions in problem contexts, including 'find the difference'. | Children can explain the mistake made when the columns have not been ordered correctly. <br> Use approximation to check calculations. I calculated 18,000 + 4,000 mentally to check my subtraction. |
| Choosing efficient methods |  |  | To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ <br> Use addition to check subtractions. I calculated $7,546-2,355=5,191$. <br> I will check using the inverse. |



| Understanding factors | Use cubes or counters to explore the meaning of 'square numbers'. <br> 25 is a square number because it is made from 5 rows of 5 . <br> Use cubes to explore cube numbers. <br> 8 is a cube number. | Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ <br> 12 is not a square number, because you cannot multiply a whole number by itself to make 12. | Understand the pattern of square numbers in the multiplication tables. <br> Use a multiplication grid to circle each square number. Can children spot a pattern? |
| :---: | :---: | :---: | :---: |
| Multiplying by 10, 100 and 1,000 | Use place value equipment to multiply by 10 , 100 and 1,000 by unitising. | Understand the effect of repeated multiplication by 10 . | Understand how exchange relates to the digits when multiplying by 10,100 and 1,000 . $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$ |





Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School


| Understanding inverse operations and the link with multiplication, grouping and sharing | Use equipment to group and share and to explore the calculations that are present. <br> I have 28 counters. <br> I made 7 groups of 4 . There are 28 in total. <br> I have 28 in total. I shared them equally into 7 <br> groups. There are 4 in each group. <br> I have 28 in total. I made groups of 4 . There are 7 equal groups. | Represent multiplicative relationships and explore the families of division facts. |  |  |  |  |  |  | Represent the different multiplicative relationships to solve problems requiring inverse operations. $K * J=\square$ $12+\square=3$ $\square \cdot 3=12$ $\bar{D}+3=12$ <br> Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dividing whole numbers by 10 , 100 and 1,000 | Use place value equipment to support unitising for division. $4,000 \div 1,000$ <br> 4,000 is 4 thousands. $4 \times 1,000=4,000$ <br> So, $4,000 \div 1,000=4$ | Use a bar model to $380 \div 10=38$ <br> 380 is 38 tens. $\begin{aligned} & 38 \times 10=380 \\ & 10 \times 38=380 \end{aligned}$ <br> So, $380 \div 10=38$ | sup |  | vidin | by |  | ing. | Understand how place value grid 1,000. $3,200 \div 100=?$ <br> 3,200 is 3 thous $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=3 \\ & 3,200 \div 100=3 \end{aligned}$ <br> So, the digits will | wh <br> div | digits change on a by 10,100 or <br> © <br> 0 <br> undreds. <br> aces to the right. |


| Dividing by multiples of 10, 100 and 1,000 | Use place value equipment to represent known facts and unitising. <br> 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ <br> 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$ | Represent related facts with place value equipment when dividing by unitising. <br> 180 is 18 tens. <br> 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ <br> 12 ones divided into groups of 4. There are 3 groups. <br> 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$ | Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$ |
| :---: | :---: | :---: | :---: |



Use short division for up to 4-digit numbers divided by a single digit.

0556
$7 \longdiv { 3 ^ { 3 } 8 ^ { 3 } q ^ { 4 } 2 }$
$3,892 \div 7=556$
Use multiplication to check.
$556 \times 7=$ ?
$6 \times 7=42$
$50 \times 7=350$
$500 \times 7=3500$
$3,500+350+42=3,892$


| Understanding the relationship between fractions and division | Use sharing to explore the link between fractions and division. <br> 1 whole shared between 3 people. <br> Each person receives one-third. <br>  | Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=$ | Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Year 6 |  |  |  |
|  | Concrete | Pictorial | Abstract |
| Addition |  |  |  |
| Comparing and selecting efficient methods | Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. | Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. <br> Compare written and mental methods alongside place value representations. <br> Use bar model and number line representations to model addition in problem-solving and measure contexts. | Use column addition where mental methods are not efficient. Recognise common errors with column addition. $32,145+4,302=?$ <br> Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient. |


| Selecting mental methods for larger numbers where appropriate | Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ <br> This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$ | Use a bar model to support thinking in addition problems. $257,000+99,000=?$ $\square$ <br> I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ $\text { So, } 257,000+99,000=356,000$ | Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ <br> 195 thousands +6 thousands $=201$ thousands <br> So, $195,000+6,000=201,000$ |
| :---: | :---: | :---: | :---: |
| Understanding order of operations in calculations | Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=?$  | Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. $\text { Tik cun tewrtien ax } \frac{16 \times 4 \cdot 15-6}{\left.\frac{(16 \times 4)}{54}+\frac{(15 \cdot 6}{55}-\Rightarrow\right)}$ | Understand the correct order of operations in calculations without brackets. <br> Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$ |
| Subtraction |  |  |  |

Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

| Comparing and <br> selecting <br> efficient <br> methods |
| :--- |
|  |



| Using knowledge of factors and partitions to compare methods for multiplications | Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$ | Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. <br> Represent and compare methods using a bar model. | Use a known fact to generate families of related facts. <br> Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Multiplying by 10, 100 and 1,000 | Use place value equipment to explore exchange in decimal multiplication. <br> Mepresturt us <br> Prullic.r bi 10 . <br> Exiverge a-digruus <br> of thet will:s $0.3 \times 10=?$ <br> 0.3 is 3 tenths. <br> $10 \times 3$ tenths are 30 tenths. <br> 30 tenths are equivalent to 3 ones. | Understand how the exchange affects decimal numbers on a place value grid. $0.3 \times 10=3$ | Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10,100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \end{aligned}$ $\begin{aligned} 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$ |



| Understanding <br> factors |
| :--- |


| Dividing by a 2digit number using factors | Understand that division by factors can be used when dividing by a number that is not prime. | Use factors and repeated division. $1,260 \div 14=?$ <br> 1260 $\square$ $\begin{aligned} & 1,260 \div 2=630 \\ & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$ | Use factors and repeated division where appropriate. |
| :---: | :---: | :---: | :---: |
| Dividing by a 2digit number using long division | Use equipment to build numbers from groups. <br> 182 divided into groups of 13. <br> There are 14 groups. | Use an area model alongside written division to model the process. $377 \div 13=?$ <br> 13 $\square$ <br> 13 $\square$ <br> $377 \div 13=29$ | Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). <br> Write the required multiples to support the division process. $377 \div 13=?$ <br>  <br> $1 3 \longdiv { 3 7 5 }$ <br> $-13016$ <br> $-13018$ <br>  $377 \div 13=29$ <br> A slightly different layout may be used, with the division completed above rather than at the side. <br> Divisions with a remainder explored in problemsolving contexts. |



## KEY STAGE 3 overview

Power Maths © Pearson 2019
Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

In Key Stage 3, the children will master the ability to apply the 4 operations using the formal written methods of column addition, column subtraction, column multiplication, short division and long division; with both integers and decimals. Children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They calculate fluently with whole numbers, decimals, fractions and percentage and apply the rules of number to algebra. Children solve problems with fluency in skill; learning how different areas of Maths are linked. The children are introduced to probability and detailed data handling methods.

Key language: Integer, column method, term, expression, equation, inequality, formula, coefficient, solve, linear, expand, factorise, prime factorisation, probability, sample space diagram, mutually exclusive, correlation, pi, diameter, perimeter, circumference, volume, polygons, interior angles, exterior angles, corresponding angles, alternate angles, significant figures, estimate, percentage increase/decrease, multiplier, positive and negative correlation.

## 4 operations:

The children build on the formal written methods of column addition, column subtraction, short and long multiplication and short and long division. The children build fluency in the application of these skills from 7 digit numbers to decimal calculations. The children will be taught to calculate accurately with negative (directed) numbers.
Consideration is given as to when we apply a written method, when we use jottings and when we adapt the use of a calculator.
Calculator keys will be explored to include pi, square and cube roots, square and cube buttons, fraction, S-D as well as the basic 4 operations.
These operations will be applied when tackling more complex problems resulting in multiple steps of workings.
The children will be taught to calculate compound measures such as speed and density.

## Fractions, Decimals and Percentages:

The children will be taught how to add, subtract, multiply and divide fractions; both proper and improper. They will be expected to apply the formal written methods of the four operations to decimals with up to 3 decimal places.
Children will be taught equivalent fractions, decimals and percentages. They will be encouraged to use these equivalences to support their problem solving. They will also be taught to calculate percentages of amounts, percentage increase and decreases and percentage change through written methods and the use of a calculator.

## Algebra:

Algebra is the largest unit covered in KS3. The children will be expected to know the difference between a term, expression, equation and formula. They will be taught to simplify expressions through gathering of like terms and substitution. They will also be taught to manipulate linear expressions through expanding brackets and factorising. They will need to be able to solve linear equations with one unknown values as well as unknowns on both sides. They will then combine these skills with both positive and negative coefficients. These algebra skills will transfer to linear graphs where the children will learn the importance of $\mathrm{y}=\mathrm{mc}+\mathrm{c}$. The importance of $m$ and $c$ will be investigated and the children will learn how to rearrange formulae in order to create $y=m x+c$. The children will be able to generate coordinates from this equation to plot linear graphs. Formulae will be applied to calculate perimeter, areas and missing angles in shapes. The children will need to learn some formulae off by heart for their assessments. They will be expected to be able to form and solve algebraic equations from written questions.

## SCHOLARSHIP overview

Throughout the Scholarship course, the children will be expected to cover everything within the Key Stage 3 curriculum and beyond. Most senior schools will be expecting subject knowledge to reflect GCSE standard. Algebra skills will play a significant part in the higher level thinking the children will need to demonstrate. They will be taught to apply combinations of skills and build fluency in their approach to problem solving. The application of skills will often be abstract and they need to communicate their processes effectively. The children will be taught to think outside the box and build resilience when facing questions, which appear to be impossible! They will need to combine all areas of Maths skills to demonstrate appropriate calculations and methodical thinking. Throughout the scholarship course, Algebra will play a substantial part. The class will be taught high level algebra skills and will be expected to form and create their own equations from written problems. They will also need to know formulae for area, perimeter and circumference and to use these formulae without being prompted. Individual schools will expect different standards of understanding. We will differentiate work to try to ensure that all students are reaching the expected standard of knowledge, skill and understanding.

Key language: Integer, column method, term, expression, equation, inequality, formula, coefficient, solve, linear, prime factorisation, probability, sample space diagram, mutually exclusive, correlation, pi, diameter, perimeter, circumference, volume, polygons, interior angles, exterior angles, corresponding angles, alternate angles, significant figures, estimate, percentage increase/decrease, multiplier, quadratics, positive and negative correlation, expand, factorise, completing the square, Pythagoras' theorem, hypotenuse, chord, tangent, changing the subject, average mean, estimated mean

## 4 operations:

The children will be expected to fluently apply the formal written methods for addition, subtraction, multiplication and division to whole numbers (both positive and negative), decimals and fractions (both proper and improper). They will be expected to calculate with brackets and indices beyond squares and cubes. The children will be challenged to apply these skills to complex and abstract worded problems often combining skills across a number of steps

## Fractions, Decimals and

## Percentages:

The children will be expected to know equivalences and be able to use these to make estimates of unknown equivalences. They will be expected to be able to fluently move between fractions, decimals and percentages to appropriately solve problems. These problems could extend to both algebra and geometry. Children will be taught to calculate percentage increase and decrease as well as repeated percentage increase and decrease e.g. compound interest and depreciation.

## Algebra:

Algebra will dictate a significant amount of the Scholarship curriculum. The children will be expected to build on their understanding of calculating with number and apply this when faced with problems involving unknowns.
The children will be expected to know the difference between a term, expression, equation and formula as well as linear, quadratic and cubic. They will be taught to simplify expressions through gathering of like terms and substitution. They will also be taught to manipulate linear and quadratic expressions through expanding brackets and factorising. They will need to be able to solve linear and quadratic equations with one unknown values as well as unknowns on both sides. They will then combine these skills with both positive and negative coefficients. (They will not be expected to apply the quadratic formula)
These algebra skills will transfer to graphs where the children will learn the importance of $\mathrm{y}=\mathrm{mc}+\mathrm{c}$. The importance of $m$ and $c$ will be investigated and the children will learn how to rearrange formulae in order to create $y=m x+c$. The children will be able to generate coordinates from this equation to plot linear graphs. The children will be taught to notice the shape and pattern of linear, quadratic, cubic and reciprocal graphs.
Formulae will be applied to calculate perimeter, areas and missing angles in shapes. The children will need to learn some formulae off by heart for their assessments. They will be expected to be able to form and solve algebraic equations from written questions.

The children will be expected to have fluency and quick response to 'known facts' e.g. primes, squares and cubes as well as corresponding roots.
The children will be taught to calculate compound measures such as speed, velocity and density.

The children will be taught to spot sequences with fractions and be able to deduce the nth term of numerical sequences involving fractions, decimals and percentages.

The children will also be taught to solve simultaneous equations through elimination and substitution. This may stretch to graphical representation in some circumstances. They will also be taught to solve and graph inequalities and rearrange equations to change the subject. They will be introduced to Pythagoras' theorem in both 2d and 3d shapes as well as congruent triangles and the laws of congruence. All of these skills will be taught to a level where they can be applied to problem solving.


[^0]:    Power Maths © Pearson 2019
    Copying permitted for purchasing institution only- amended by Anne Coats for Swanbourne House School

[^1]:    Power Maths © Pearson 2019

[^2]:    Power Maths © Pearson 2019

[^3]:    Power Maths © Pearson 2019

[^4]:    Power Maths © Pearson 2019

